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ANALYSIS OF
 ALGORITHMS;

 REVIEW

I ain’t lookin’ to block you up,
Shock or knock or lock you up,
Analyze you, categorize you,
Finalize you, or advertise you.

—Bob Dylan,
‘All I Really Want To Do’

Copyright © 2003 Larry Denenberg



Administrivia
• http://larry.denenberg.com/math22/LectureP.pdf

• Exam Monday, 11:50 – 1:20,
Robinson 253

• “All questions will be from the homework and projects
and the two handouts (big O and induction)”

• Response to grader’s complaint:  Turn proofs upside
down!



Algorithm Analysis
The goal is to be able to find the complexity of a
computer program (or algorithm, which for us is the
same thing).   Recall that the complexity of a program Q
is a function fQ such that
fQ(n) = the worst-case running time of Q over all inputs

of size n
where time is measured not in seconds, but in some kind
of “basic operations”.

In fact, we won’t try to find fQ itself;  we just want the
rate of growth of fQ.   It’s enough to know that fQ is in
O(n) or O(n2) or O(log n) or O(2n) or whatever.

Our programs are written in Grimaldi’s pseudocode:
Variables aren’t declared, input is supplied magically in
some variable and output is just left in another variable
(or perhaps returned).   We have loops of the forms

for <var> := <start> to <end> do
while <condition> do

with scope indicated by indentation.  Assignment is
performed by the := operator.



Example:  TRIANGLE
Here is an example.   The following program solves the
problem TRIANGLE:    Given a positive integer N,
compute  1 + 2 + 3 + . . . + N.         [Why “triangle”?]

Input: Positive integer N
       sum := 0
   for  i := 1 to N do
       sum := sum + i

(Is it clear that this algorithm solves the problem?)

What is the complexity of this program?   The first
statement is executed once.  The second and third
statements are each executed N times.  The total time is

f(N)  =  c1 + Nc2 + Nc3 = c1 + (c2 + c3)N
where cj is the number of basic operations in step j.  We
have  f Œ O(N)  since we can ignore constant factors and
all powers of N except the highest.

Of course we don’t usually write all these details.   We
ignore the first statement and simply note that the
program has a single loop that does constant work and is
executed N times, so the time is obviously in O(N).



A Worse Algorithm
Here’s another algorithm that solves the same problem:

Input:  Positive integer N
   sum := 0
   for  i := 1 to N do
       for  j := 1 to i do
           sum := sum + 1

Is it just as clear that this algorithm solves the problem?

What is the time complexity?   The “outer” loop (on i)
executes N times.   But the number of times that the
“inner” loop (on j) executes changes each time,
depending on the outer loop:  It executes i times, but i
varies from 1 to N.

So how many times is the final step executed?   It’s
executed  1 + 2 + 3 + . . . + N  times, which we know is
N(N+1)/2  =  (1/2) N2  + (1/2) N.   Ignoring constant
factors and powers of N other than the largest, we find
that the algorithm’s time complexity is in O(N2).

In both examples we’ve seen, the number of times things
execute hasn’t depended on the input:  worst, average,
and best case are all the same.



A Better Algorithm
One last algorithm for the same problem:

Input: Positive integer N
  sum := N * (N+1) / 2

This algorithm runs in constant time, that is time O(1),
time independent of N.   It beats the other two handily.

You may see a loophole in what we’ve done so far:
Why not just wildly overestimate?   The time complexity
of all three algorithms we’ve seen is in O(2n);  why not
just say that and be done, eh, grader?

Grimaldi’s response:  No, we want the ‘best “big-Oh”
form’, that is, if the algorithm is O(n) and we answer
O(n2), we’re wrong because that answer isn’t ‘best’.

Denenberg’s response:  No, because what we’re really
looking for is the exact order of the algorithms;  we want
Q, not O.   We’re not proving it, but in fact the three
algorithms we’ve seen are in Q(n), Q(n2), and Q(1).
The complexities are no bigger and also no smaller.



Searching
We now consider an algorithm for SEARCH:   Given a
sequence S of number s1, s2, s3, . . . , sn and a target
number s, determine whether s is found anywhere in S.

    for  i := 1  to  n
       if  s = si  return “yes”
    return “no”

How many times does the loop execute?   It depends on
whether  s  is in the sequence, and where it is!   In the
best case s = s1 and the loop executes once.    But we’ve
defined complexity to measure the worst case, which
happens either when  s = sn or  s  isn’t in the sequence at
all, in which case the loop executes n times.   So the
complexity of the algorithm is in O(n).

[As we said, we sometimes prefer to consider average
case complexity.   Here the average number of times
through the loop is n/2 assuming that s is in the sequence
and is equally likely to be located anywhere.  But maybe
s  is rarely in the sequence, or is much more often one of
the first members!   We can get any answer from O(n) to
O(1) depending on these assumptions.]



A Better Algorithm
Suppose that the members of sequence S are distinct and
ordered, that is, s1 < s2 < s3 < . . . < sn.   Then there is a
much better algorithm known as binary search:

L := 1,  R := n         (searching from L to R)
while L ≤ R          (while anything remains. . .)
   M := Î(L+R)/2˚            (M is the middle)
   if s = sM return “yes”         (found)
   if s < sM then R := M–1      (cut in half)
   if s > sM then L := M+1      (cut in half)
return “no”                     (not there)

[Blackboard explanation of how this works]

How many times does the loop execute?   The key point
is that each time through the loop, the number of
elements remaining is cut in half!   So the answer is this:
The loop executes as many times as you have to cut n in
half to get down to 1.   This number is log2 n  or lg n.
[By definition, 2lg n = n, which says that if you start with
1 and double  lg n  times you get n.  Binary search does
the same thing backwards, halving.  Learn this!]

So the worst-case complexity of this program is O(lg n).



What You Need
I.  SETS

- Elements, subsets, proper subsets, set equality
- Union, intersection, complement, [sym. diff.]
- Cardinality, power set, null set
- [Membership tables], Venn diagrams
- Ordered pairs, Cartesian product
- Elementary probability (count and divide)

II.  MATHEMATICAL  INDUCTION

III. RELATIONS  and  FUNCTIONS
- Relations and binary relations and their properties
- Domain, codomain, range, image, preimage
- Injective (1-1), surjective (onto), bijective (both)
- Floor and ceiling functions
- [Functions of multiple arguments, projections]
- Composition of functions
- Inverses of functions
- Growth rates of functions, O and W notation
- Elementary algorithm analysis



Requests & Examples
• Grimaldi section 5.6 number 18

• If  n  ≥ 14, then n can be written as a sum of 3s and 8s.
(Also, the problem on the Fundamental Theorem of
Arithmetic from Project 4.)

• Suppose   f : A Æ B   and    g : B Æ C   are both onto.
What are the domain and codomain and range of  f o g  ?
What are the domain and codomain and range of  g o f  ?
Pick one of these functions and show that it is onto.

• Prove that  Îx + y˚   ≥   Îx˚  +  Îy˚  for all real x and y.

• Prove that   A « B  =  A   if and only if   –B  Õ  –A
(remember that Grimaldi uses overline for complement!)

• What is the probability that a two-digit number (10-99)
contains a 7?   What about a three-digit number?

• Suppose  f  is a function whose domain and codomain
are the digits 0 through 9.   What is the probability that
the image of every even digit is also an even digit?



Requests & Examples
Grimaldi section 5.6 number 18

The key thing is to regard f, g, and h as functions whose
input is a single argument, namely an ordered pair of
sets, and whose output is a set.

All three functions are onto and none are one-to-one.
Hence none are invertible, which requires one-to-one-
ness.

All the sets of part (d) that deal with f–1 and h–1 are
infinite; there are lots of ways to make small sets with
intersections and symmetric differences!

g–1(0) has a single element:  the ordered pair (0,0)

g–1({2}) has two elements:  the ordered pair (0,{2}) and
    the ordered pair ({2},0)      [these are different!]

g–1({8,12}) has four elements:  (0,{8,12}),   ({8,12},0),
     ({8},{12}),  and  ({12},{8})



Requests & Examples
If  n  ≥ 14, then n can be written as a sum of 3s and 8s.

Here is a flawed proof using the strong form of the
Principle of Mathematical Induction:

Base case:   If  n = 14, then n can be written 3 + 3 + 8.
Inductive case:  Assuming that every number from 14 up
through n can be written as a sum of 3s and 8s, we prove
that n+1 can be so written.   We can write

n+1 = 3 + (n–2)
Now n–2 can be written with 3s and 8s by the Inductive
Hypothesis, so n+1 can be so written by just adding
another 3.  Done.

What’s wrong with this proof?   The Inductive
Hypothesis applies only to numbers 14 or greater.
We’ve applied it to n–2.   So we must have n–2 ≥ 14,
which is to say n ≥ 16.   That is, our Inductive Case can
only be used to prove the theorem for 17 and higher!  So
we must explicitly show that the Theorem is true for
n=15 and n=16;  we need two more base cases!  These
are easy (15=3+3+3+3+3 and 16 = 8+8) so we’re done.



Requests & Examples
Suppose   f : A Æ B   and    g : B Æ C   are both onto.
What are the domain and codomain and range of  f o g  ?
What are the domain and codomain and range of  g o f  ?
Pick one of these functions and show that it is onto.

First of all f o g isn’t defined at all;  g takes something in
B to something in C, but f can’t then operation on
something in C!   So forget f o g.

But g o f is OK:   f takes something in A to something in
B, which g then takes to something in C.   So the domain
of g o f is A and the codomain is C.

It turns out that g o f must be onto, as we will show, so
the range of g o f is all of C.

To show g o f is onto, we must show that for any c Œ C
there is an a Œ A such that  (g o f)(a) = c, which is to say
that g(f(a)) = c.   So given such a c Œ C, the fact that g is
onto means that there is some element of B, call it b1,
such that g(b1) = c.  Now by the onto-ness of A there is
an element of A, call it a1, such that f(a1) = b1.   But if
f(a1) = b1, and g(b1) = c, then g(f(a1)) = c, so we have
found the necessary a and the proof is complete.



Requests & Examples
Prove that  Îx + y˚   ≥   Îx˚  +  Îy˚  for all real x and y.

We can write  x = floor(x) + rx, where rx is a number at
least 0 and less than 1.   Similarly,  y = floor(y) + ry
where 0 ≤ ry < 1.   (All we’ve done is to separate out the
fractional parts of x and y.)

So
x+y  =  floor(x) + floor(y)  + rx + ry

and thus
floor(x+y)  =  floor(floor(x) + floor(y) + rx + ry )

If we now throw away rx and ry the right-hand side may
get smaller but can’t get bigger, since rx and ry are
nonnegative.  So we have

floor(x+y)  ≥  floor(floor(x) + floor(y))
Finally, floor(x) and floor(y) are integers, so taking
further floors of them (even after adding) does nothing.
That is,

floor(floor(x) + floor(y)) = floor(x) + floor(y)
and we’re done.



Requests & Examples
Prove that   A « B  =  A   if and only if   –B  Õ  –A
(remember that Grimaldi uses overline for complement!)

This is an “if or only if”, so we must prove two things:

• If  A « B = A,  then   –B Õ  –A
So assume  A « B = A.   To prove  –B Õ  –A we must
prove that any x Œ  –B is also an element of  –A.   So let
x be any element in  –B.   By definition of –B we have
x œ B.   But if x œ B, then x œ A « B  (since anything
not in B can’t be in the intersection of B with anything!).
And if x œ A « B then x œ A, since A « B = A by
assumption.  Finally, if x œ A then  x Œ – A.

• If   –B Õ –A, then A « B = A.
So assuming  –B Õ  –A we must prove A « B = A.  One
way to prove two sets equal is to prove that each is a
subset of the other, that is, A « B Õ A and A Õ A « B.
The first of these is always true;  anything in A « B is by
definition in A!   So we only need to prove A Õ A « B,
that is, any x Œ A is an element of A « B.   It suffices to
show that x Œ B, that is, we must show that if x Œ A then
x Œ B.   But we know that  –B Õ  –A, i.e., that if x œ B
then x œ A, and this is the contrapositive of (hence
equivalent to) the thing we want to prove!



Requests & Examples
What is the probability that a two-digit number (10-99)
contains a 7?   What about a three-digit number?

There are 9 two-digit numbers that contain a seven in the
unit’s place (17, 27, . . ., 97).   There are ten that contain
a seven in the ten’s place (70, 71, 72, . . . 79).   But one
of these numbers is double-counted, namely 77.   So
there are 16 numbers that contain a seven.

There are 90 two-digit numbers total.  So the answer is
16/90.

This is a use of the counting rule that we proved with
Venn Diagrams:    | A » B |  =  | A | + | B | –  | A « B|.
Here A is the set of numbers with a seven in the unit’s
place and B is the set of numbers with a seven in the
ten’s place.

To do it for three-digit numbers, you must use the
formula for the size of the union of three sets that we
learned in Lecture J.  Check it out.   The answer is

(90 + 90 + 100 – 9 – 10 – 10 + 1)  /   900



Requests & Examples
Suppose  f  is a function whose domain and codomain
are the digits 0 through 9.   What is the probability that
the image of every even digit is also an even digit?

To build a function from digits to digits, we have to pick
a value of the function for each digit.   That is, we have
to pick a value for f(0) and there are ten choices, for f(1)
and there are ten choices, etc.   So the total number of
functions from digits to digits is 1010.   (Recall the result
from the notes, or from Grimaldi, that the number of
functions from finite set S to finite set T is |T||S| .)

How many such functions take even digits to even
digits?   There are now only five choices for f(0); it must
be 0, 2, 4, 6, or 8.   Similarly, there are five choices for
f(2), f(4), f(6), and f(8).   But f(1) can still be any of the
ten digits, as can f(3), f(5), f(7), and f(9).  So the answer
is (55)(105).

So the probability that a function from digits to digits
takes even digits to even digits is (55)(105)  divided by
1010.   This is a perfectly acceptable answer and doesn’t
need to be simplified to 1/32.


