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DIVISIBILITY

Marriage and death and division
Make barren our lives.

—Swinburne, ‘Dolores’
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Administrivia
• http://denenberg.com/LectureQ.pdf

• Any blowback from the exam?



Divisibility
Suppose x and y are integers with x ≠ 0.   We say that
x divides y, or y is divisible by x, and write x | y, if there
exists an integer  z  such that  xz = y.

(We also say x is a divisor of y and y is a multiple of x.)

Examples:
3 | 12      9 | 0     –1 | 39     –3 | –12     15 | 60     6 | 6

It’s obvious that   1 | x   for any integer x, and if  x ≠ 0,
then  x | 0 and  x | x.   This last means that  |  is a reflexive
binary relation on the nonzero integers.

Note that sign never makes a difference:   if  x | y,   then
x | –y   and   –x | y   and   –x | –y.    (Prove this formally
as an exercise.)

The definition is phrased purely in terms of integers;
there’s nothing like “x divides y if  y/x has no fractional
part” or anything else that requires real numbers.



More Properties of  |
[All variables range over the integers.  Anything on the
left of a  |  is assumed nonzero.]

If  x | y  and  y | x,  then either   x = y  or   x = –y.

If  x | y and  y | z, then x | z.     That is,  |  is a transitive
binary relation.

If  x | y,  then  x | yz.

If   x = y + z, and  w  divides two of  x, y, and z, then it
divides the third.

If   x | y1,   x | y2,  . . .,  x | yn, then  x  divides any linear
combination of the yi, that is,

x  |  (z1y1 + z2y2 + . . . + znyn)
As a special case, if  x | y  and  x | z,  then  x | (ay + bz).

In the text and on the blackboard, we can put a slash
through  |  to denote “does NOT divide”.



Primes
Suppose  p  is an integer greater than 1.   It’s always the
case that  p | p  and  1 | p.   If there are no other positive
integers that divide p, then p is called prime.

An integer  n  > 1  that isn’t prime is called composite.

Lemma:   Every composite number has a prime divisor.
Proof:  Suppose to the contrary that there exist composite
numbers with no prime divisors.  Let  n  be the smallest
such number.   Since  n  is composite, it has a divisor  m
which is greater than 1.
Now  m  must itself be composite since  n  has no prime
divisors by assumption.   But also  m  is smaller than  n.
So  m  has a prime divisor (since  n  is the smallest
composite with no prime divisors).   But any divisor of
m  must divide  n  as well, a contradiction.

Comment:  We used this Lemma without proof back in
Lecture A.



How Many Primes?
As we proved in Lecture A, there are infinitely many
primes.  There are nearly as many proofs of this fact!
[Quick review of Euclid’s proof.]

Of interest:   Let  Nn be the product of the first n primes.
It is unknown whether or not there are infinitely many n
such that Nn +1 is prime.  It is unknown whether or not
there are infinitely many n such that Nn +1 is composite.

Another proof (Kummer):  Suppose there are finitely
many primes and let N be their product.  Then N–1  (a
product of primes)  and N have a common divisor p.
But then  p  also divides  N – (N–1) = 1, an absurdity.

A strengthening of the Lemma:   If  n  is any composite,
then there is a prime   p ≤≤ ÷n  that divides n.
Proof:   By the Lemma, there must be a prime  q  that
divides  n.   If   q ≤≤ ÷n  then we’re done.   Otherwise, we
have n = qx (since q | n)  with q > ÷n.   But if the product
of two numbers is  n, they can’t both be greater than ÷n .
So  x ≤≤ ÷n.   Now x  > 1 since q < n, so x is either prime,
in case we’re done, or composite, in which case it has a
smaller prime divisor which also divides n.   QED



The Division Theorem
If x and y are integers with  y > 0, then there exist unique
integers  q  and  r  such that  x = qy +r  with  0 ≤ r < y.

We call  q  the quotient and  r  the remainder.

Examples:
If  x = 38  and  y = 7,  then  q = 5  and  r = 3
If  x = 33 and  y = 11,  then  q = 3  and  r = 0
If  x = 12 and  y = 20,  then  q = 0  and  r = 12
If  x = 14  and  y = 1,  then  q = 14  and  r = 0
If  x = –20 and  y = 5,  then  q = –4  and  r = 0
If  x = –9  and  y = 4,  then  q = –3  and  r = 3    [!!]
If  x = –9 and  y = –4,  then the Theorem doesn’t apply

The Theorem guarantees that q and r exist, but doesn’t
tell how to find them.   We can find them by repeatedly
subtracting y from x  (if x ≥ 0)  or adding y to x (if x < 0)
until the result is between 0 and y;  the number of times
we subtracted or added is q.



Proof of the Division Thm
Part I:  Existence.  (Sketch)
If  y | x, then  x = zy  and we just take  q = z  and  r = 0.
Otherwise, let S be the set of all values of x – zy for all
integer z such that x – zy is positive.   [Prove that S is
nonempty.]   So S has a least element, call it r, which
equals  x – qy for some q.  We know that r  > 0 so all we
need prove is that r < y.
If r = y then x – qy = y so x = (q+1)y, which means y | x,
a contradiction.   But if r > y then r = y + c for some
positive c < r, and x – qy = y + c implies x – (q+1)y = c,
contradicting the fact that r is the smallest such number.

Part II:  Uniqueness.
Suppose that x = q1y + r1 = q2y + r2, with 0 ≤ r1, r2 < y.
Then y(q1–q2)  = r1 – r2.   If  q1 ≠ q2 then the absolute
value of the LHS is at least y, which means r1 and r2
must differ by at least y, which is impossible.  So q1 = q2
and the RHS is zero, so r1 = r2.

[This is the standard pattern for an existence-and-
uniqueness proof:   Prove existence, then assume the
existence of more than one and prove a contradiction.]



Change of Radix
We can write numbers using radix (base) other than 10.

Example:  18 can be written 10010 (base 2), since
1(24) + 0(23) + 0(22) + 1(21) + 0(20)   =   18

Example:  55 can be written 106 (base 7), since
1(72) + 0(71) + 6(70)  =  70

Example:  7530 can be written 1D6A (base 16), since
1(163) + 13(162) + 6(161) + 10(160)   =   7530

Note that in base 16 we must use A,B,C,D,E,F as
“digits” representing 10,11,12,13,14,15.

Example: 25 can be written 31(base 8), since 3(8)+1=25.
The fact that 25(dec) = 31(oct) can be used to prove the
equivalence of Christmas and Halloween.

In all cases (including b = 10)
dn dn–1...d0 (base b)  =  dnbn + dn–1bn–1 + . . . + d0b0

where the “digits” in base b are 0, 1, 2, . . ., b–1.



Base Conversion
What does this have to do with the Division Theorem?
Here’s how to convert a positive number x to base b:

   Apply the Theorem to  x  and  b, getting  x = q0b + r0.
   Apply it to the quotient q0 and b, getting  q0 = q1b + r1.
   Apply it yet again to  q1  and b, getting  q1 = q2b + r2.
   Continue in this way until some quotient  qn  is 0.

Then  x  in base  b  is   rnrn–1rn–2...r0, that is, take the
remainders  r0, r1, . . . in reverse order.

[Blackboard demo using the previous slide’s examples]

Why does this work?   First, q0b in base b is just q0 in
base b followed by 0, since that’s how you multiply by b
in base b.  Furthermore, r0 is a single digit in base b
since it’s less than b but at least 0.   So  x = q0b + r0  in
base  b  is just  q0  in base  b  with  r0  appended.
To find q0 in base b we just repeat the process.

Comment:  This works only for positive x and b.  To
convert a negative number, convert its absolute value
and tack on a minus sign.  The case of negative b
 (e.g.  7 (base –2) = 11011) isn’t handled in this way.
There are also shortcuts in particular cases, e.g. 2 <-> 16.



GCD
Suppose  y  and  z  are integers, and that  x  is a positive
integer such that  x | y  and  x | z.   Then  x  is said to be a
common divisor of  y  and  z.

Examples:   The common divisors of 60 and 108 are 1, 2,
3, 4, 6, and 12.    The common divisors of  –4  and  18
are 1 and 2.   The only common divisor of  8 and 9 is 1.
The common divisors of 15 and 60 are 1, 3, 5, and 15.

Now suppose that  x  is a common divisor of  y  and  z,
which are not both zero.  If in addition every other
common divisor of  y and  z  divides  x, then  x  is a
greatest common divisor (GCD) of  y  and  z.

Examples:  12 is a GCD of 60 and 108 since 1, 2, 3, 4,
and 6 all divide 12.    15 is a GCD of 15 and 60.

Note that, for Grimaldi, the term “greatest common
divisor” does NOT mean “the numerically largest of all
the common divisors”.   It turns out that the two are the
same, that is, there is only one Grimaldi-style GCD and
it is in fact the largest common divisor.  But we have to
prove this.  (If we defined GCD the sane way, we’d have
to prove that every common divisor divides the GCD.)



Existence & Uniqueness
Any two integers x and y not both 0 have a unique GCD.
Part I:  Existence     (same Well-Ordering trick as before)
Let  S  be the set of all positive values  ax+by  for all
integers  a  and  b.  Clearly  S  is nonempty, so it has a
smallest element  c, which we will prove is a GCD of
x and y.  There are several things to prove:
c is a positive integer.   Clear from the definition of  c.
Any divisor of both  x  and  y  divides  c.  If  d | x then
d | ax,  and if  d | y then d | by, so if d divides both  x  and
y  then it divides  c = ax + by.
c divides x.   Suppose otherwise.  Then by the Division
Theorem  x = qc + r  with  0 < r < c.   But then

r  =   x – qc  =  . . .  =  (1 – qa)x + (–qb)y   Œ   S
which, since  r < c,  contradicts the fact that c is the
smallest element of S.
c divides y.   Same proof, with x and y swapped!

Part II:  Uniqueness
Suppose  c1  and  c2  are GCDs of  x and y.   Then  c1 | c2
since  c2  is a GCD, and also  c2 | c1  since  c1  is a GCD.
This means that either  c1 = c2  or  c1 = –c2.   But both
c1 and c2 must be positive (by defn of GCD)  so c1 = c2.



Properties of GCD
For integers x, y not both zero, we write gcd(x,y) for the
(now known unique) GCD of  x and y.   Simple results:

gcd(x,x) = x  and  gcd(x,y) = gcd(y,x),  so  gcd is an
idempotent and symmetric closed binary operation on Z
(except for the peculiarity that gcd(0,0) is not defined).

If  gcd(x,y) = 1, then  x  and y  are called relatively prime.
Intuition:  A single prime  p  has no factors except itself
and 1.  Two relatively prime numbers have no common
factors except 1.   Examples:  32 and 9,  28 and 45.

For any nonzero x and integer k,  gcd(x, kx) = x.
Examples:   gcd(15,60) = 15    gcd(–29,290) = 29.

gcd(x,y) is the smallest positive integer that can be
written as a linear combination of  x  and  y.   (This
follows directly from the proof on the preceding slide.)

For any nonzero x,  gcd(x,0) = x.   For  x  and  y  not both
zero,  gcd(x,y) = gcd(–x,y) = gcd(x,–y) = gcd(–x,–y).
(So henceforth we assume that x and y are both positive.)



The Euclidean Algorithm
Now, given  x  and  y,  how do we calculate gcd(x,y)?
Find all divisors of both and rummage through them?
There is a better way, due to Euclid.

Given positive integers x and y, to find gcd(x,y):

[1]  Start with   a := x   and   b := y
[2]  By the Division Thm, write  a = qb+r  with 0 ≤ r < b
[3]  If  r = 0, stop, and return  b  as  gcd(x,y)
[4]  Set  a := b  and  b := r  and go back to step 2

Example:  Find gcd(306, 90)
    [1]  a := 306,   b := 90
    [2]  a = 3b + 36,   so  q = 3  and  r = 36
    [4]  a := 90,    b :=  36
    [2]  a = 2b + 18,   so  q = 2  and  r = 18
    [4]  a := 36,    b := 18
    [2]  a = 2b + 0,  so  q = 2 and  r = 0
    [3]  stop;   gcd(306,90)  =  18

Next lecture we’ll prove the correctness and (if we have
time) the time complexity of Euclid’s Algorithm.



Understanding the E.A.
What is going on in the Euclidean Algorithm?

We start with   a  and  b.

First, we arrange that  a ≥ b.   (Note that the first time
through the loop simply exchanges  a  and  b  if  a < b!)

If now  b | a, then the answer is  b.   Otherwise we
replace  a  and  b  (respectively)  with  b  and the
remainder when  a  is divided by b, and we start again.
“The remainder when  a  is divided by  b”  is  written
a mod b.   (Much more on the “mod” operator later.)

The algorithm’s correctness rests on the following fact:
gcd(a, b)  =  gcd(b, a mod b)

We could show this explicitly by changing step [4] to
[4]  Calculate gcd(b,r) and return it as the answer

which yields an absolutely equivalent algorithm.

We can show that, in each iteration of the loop, the value
of at least one of   a  or  b  must decrease by a factor of at
least 1/3.   This guarantees that the algorithm is  O(lg x),
just as binary search achieves logarithmic time by cutting
the search space by a factor of 1/2 on each iteration.



Least Common Multiple
Suppose  x  and  y  are positive integers.   A positive
integer  z  is called a common multiple of  x  and  y  if
z  is a multiple of both  x  and  y, that is, if  x | z  and y | z.

Clearly any  x  and  y  have a common multiple, since  xy
is always a common multiple.   The smallest common
multiple of  x and y  is called their least common multiple
(LCM) and is written  lcm(x,y).  Uniqueness is trivial.

Examples: lcm(12,20) = 60     lcm(8,60) = 120
                  lcm(8,9) = 72     lcm(1,x) = x    lcm(x,kx) = kx

Theorem:   lcm(x,y)  divides any common multiple of
x and y.   (Nontrivial proof, in Grimaldi.)

Theorem:   For any positive x and y,
xy   =   (gcd(x,y))(lcm(x,y))

Corollary:  If  x and y are relatively prime, lcm(x,y) = xy.

Corollary:  It’s easy to calculate lcm(x,y).   Calculate
gcd(x,y) using Euclid’s Algorithm, and divide it into xy.

More on lcm next time.


